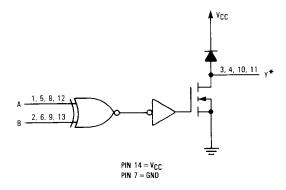
MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Product Preview

Quad 2-Input Exclusive NOR Gate with Open-Drain Outputs High-Performance Silicon-Gate CMOS

The MC54/74HC266 is identical in pinout to the LS266. The HC266 inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.


The HC266 output is a high-performance MOS N-Channel FET. Therefore, with suitable output pullup resistors, this gate can be used in wired AND applications. Using the output characteristic curves in this data sheet, this device can be used as an LED driver, or in any application that only requires a sinking current.

To comply with JEDEC Standard No. 7A, Motorola's HC266 manufactured after the date code 8547 has open-drain outputs. HC266 prior to the date code 8547 has standard CMOS outputs. (See Figure 4 for date code identifier.)

For applications requiring Standard CMOS outputs, use the HC7266.

- Output Drive Capability: 10 LSTTL Loads with Suitable Pullup Resistor
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 52 FETs or 13 Equivalent Gates

LOGIC DIAGRAM

*Denotes Open-Drain Outputs

MC54/74HC266

J SUFFIX CERAMIC CASE 632-08

N SUFFIX PLASTIC CASE 646-06

D SUFFIX SOIC CASE 751A-02

ORDERING INFORMATION

MC74HCXXXN MC54HCXXXJ MC74HCXXXD

Plastic Ceramic SOIC

 $T_A = -55^{\circ}$ to 125°C for all packages. Dimensions in Chapter 7.

9 🛮 B3

8 **1** 8

FUNCTION TABLE Inputs Output A B Y L L Z L H L H L H L H J

Z = high impedance

B2 **□** 6

GND [

This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

MC54/74HC266

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
Vin	DC Input Voltage (Referenced to GND)	- 1.5 to V _{CC} + 1.5	٧
Vout	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	٧
lin	DC Input Current, per Pin	±20	mA
lout	DC Output Current, per Pin	± 25	mA
Icc	DC Supply Current, VCC and GND Pins	± 50	mA
PD	Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package) (Ceramic DIP)	260 300	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range GND ≤ (Vin or Vout) ≤ VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open.

†Derating - Plastic DIP: -10 mW/°C from 65° to 125°C

Ceramic DIP: -10 mW/°C from 100° to 125°C
SOIC Package: -7 mW/°C from 65° to 125°C
For high frequency or heavy load considerations, see Chapter 4.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
Vcc	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} ,V _{out}	DC Input Voltage, Output Voltage (Ref	erenced to GND)	0	Vcc	V
TA	Operating Temperature, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 1)	V _{CC} = 2.0 V V _{CC} = 4.5 V	0	1000 500	ns
	(igaio (V _{CC} = 6.0 V	ō	400	

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	v _{CC}	Guaranteed Limit			
				25°C to -55°C	≤ 85° C	≤125°C	Unit
VIH	Minimum High-Level Input Voltage	V _{out} = 0.1 V, I _{out} = 0 μA or V _{out} = V _{CC} - 0.1 V, R _{pu} per Figure 2	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	V _{out} = 0.1 V,I _{out} = 0 μA or V _{out} = V _{CC} = 0.1 V, R _{pu} per Figure 2	2.0 4.5 6.0	0.3 0.9 1.2	0.3 0.9 1.2	0.3 0.9 1.2	V
V _{OL}	Maximum Low-Level Output Voltage	V _{in} =V _{IH} or V _{IL} I _{out} ≤20 μA	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	٧
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 4.0 \text{ mA}$ $ I_{out} \le 5.2 \text{ mA}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
lin	Maximum Input Leakage Current	Vin=V _{CC} or GND	6.0	±0.1	± 1.0	± 1.0	μΑ
loz	Maximum Three-State Leakage Current	Output in High-Impedance State V _{in} = V _{IL} or V _{IH} V _{out} = V _{CC} or GND	6.0	±0.5	±5.0	± 10.0	μΑ
lcc	Maximum Quiescent Supply Current (per Package)	V _{in} =V _{CC} or GND I _{out} =0 μA	6.0	2	20	40	μΑ

NOTE: Information on typical parametric values can be found in Chapter 4.

^{*}Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

MC54/74HC266

AC ELECTRICAL CHARACTERISTICS (C₁ = 50 pF, input t_r = t_f = 6 ns)

Symbol	Parameter	v _{CC}	Guaranteed Limit			
			25°C to -55°C	≤ 85° C	≤125°C	Unit
tPLZ, tPZL	Maximum Propagation Delay, (Figures 1 and 2)	2.0	120	150	180	ns
		4.5	24	30	36	
		6.0	20	26	31	
tTHL	Maximum Output Transition Time, Any Output (Figures 1 and 2)	2.0	75	95	110	ns
		4.5	15	19	22	
		6.0	13	16	19	
C _{in}	Maximum Input Capacitance		10	10	10	pF
Cout	Maximum Three-State Output Capacitance (Output in High-Impedance State)	_	10	10	10	ρF

NOTES:

- 1. For propagation delays with loads other than 50 pF, see Chapter 4.
- 2. Information on typical parametric values can be found in Chapter 4.

CPD	Power Dissipation Capacitance (Per Gate)	Typical @ 25°C, V _{CC} = 5.0 V	
	Used to determine the no-load dynamic power consumption:	11	ρF
	PD = CPD VCC ² f + ICC VCC For load considerations, see Chapter 4.	''	"

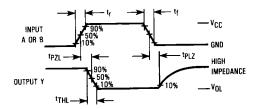
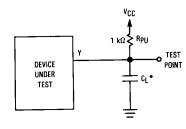



Figure 1. Switching Waveforms

^{*}Includes all probe and jig capacitance.

TYPICAL
T = 25°C

V_{CC} = 5 V

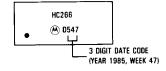
V_{CC} = 5 V


T = 25°C

T = 85°C

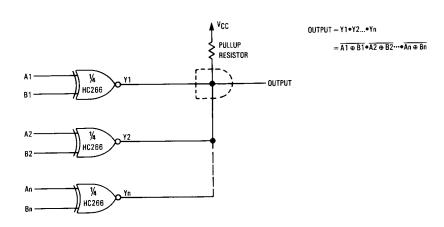
T = 125°C

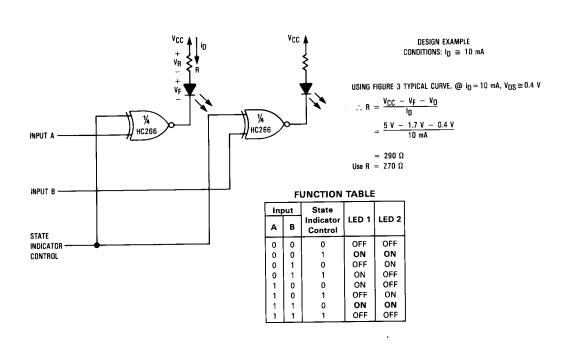
*The expected minimum curves are not guarantees, but are design aids.


Figure 2. Test Circuit

4a. DIP

Figure 4. Date Code Identifier


Figure 3. Open-Drain Output Characteristics


4b. SOIC

MOTOROLA HIGH-SPEED CMOS LOGIC DATA

WIRED AND

STATE INDICATOR WITH LED DRIVER CIRCUIT

MOTOROLA HIGH-SPEED CMOS LOGIC DATA

19